direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C22.SD16, C23.34D8, C24.148D4, C23.40SD16, C4⋊D4⋊1C4, (C22×D4)⋊2C4, C22.9(C2×D8), C22.36C4≀C2, C22⋊C8⋊49C22, C23.488(C2×D4), (C22×C4).209D4, C22.27(C2×SD16), C22.2(D4⋊C4), C4⋊D4.128C22, C22.45(C23⋊C4), (C22×C4).620C23, (C23×C4).203C22, C23.100(C22⋊C4), C2.C42⋊56C22, (C2×C4⋊C4)⋊5C4, C4⋊C4⋊1(C2×C4), (C2×D4)⋊1(C2×C4), C2.15(C2×C4≀C2), (C2×C22⋊C8)⋊5C2, C2.7(C2×D4⋊C4), (C2×C4⋊D4).2C2, C2.12(C2×C23⋊C4), (C2×C4).1144(C2×D4), (C2×C4).85(C22⋊C4), (C2×C4).110(C22×C4), (C22×C4).194(C2×C4), (C2×C2.C42)⋊13C2, C22.174(C2×C22⋊C4), SmallGroup(128,230)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C22.SD16
G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=bcd3 >
Subgroups: 492 in 194 conjugacy classes, 60 normal (28 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2.C42, C2.C42, C22⋊C8, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C4⋊D4, C22×C8, C23×C4, C23×C4, C22×D4, C22×D4, C22.SD16, C2×C2.C42, C2×C22⋊C8, C2×C4⋊D4, C2×C22.SD16
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, D8, SD16, C22×C4, C2×D4, C23⋊C4, D4⋊C4, C4≀C2, C2×C22⋊C4, C2×D8, C2×SD16, C22.SD16, C2×C23⋊C4, C2×D4⋊C4, C2×C4≀C2, C2×C22.SD16
(1 16)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)
(1 5)(2 30)(3 7)(4 32)(6 26)(8 28)(9 18)(10 14)(11 20)(12 16)(13 22)(15 24)(17 21)(19 23)(25 29)(27 31)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 6)(2 5)(3 28)(4 27)(7 32)(8 31)(9 12)(10 24)(11 23)(13 16)(14 20)(15 19)(17 22)(18 21)(25 30)(26 29)
G:=sub<Sym(32)| (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,5)(2,30)(3,7)(4,32)(6,26)(8,28)(9,18)(10,14)(11,20)(12,16)(13,22)(15,24)(17,21)(19,23)(25,29)(27,31), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,6)(2,5)(3,28)(4,27)(7,32)(8,31)(9,12)(10,24)(11,23)(13,16)(14,20)(15,19)(17,22)(18,21)(25,30)(26,29)>;
G:=Group( (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,5)(2,30)(3,7)(4,32)(6,26)(8,28)(9,18)(10,14)(11,20)(12,16)(13,22)(15,24)(17,21)(19,23)(25,29)(27,31), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,6)(2,5)(3,28)(4,27)(7,32)(8,31)(9,12)(10,24)(11,23)(13,16)(14,20)(15,19)(17,22)(18,21)(25,30)(26,29) );
G=PermutationGroup([[(1,16),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28)], [(1,5),(2,30),(3,7),(4,32),(6,26),(8,28),(9,18),(10,14),(11,20),(12,16),(13,22),(15,24),(17,21),(19,23),(25,29),(27,31)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,6),(2,5),(3,28),(4,27),(7,32),(8,31),(9,12),(10,24),(11,23),(13,16),(14,20),(15,19),(17,22),(18,21),(25,30),(26,29)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | D4 | D8 | SD16 | C4≀C2 | C23⋊C4 |
kernel | C2×C22.SD16 | C22.SD16 | C2×C2.C42 | C2×C22⋊C8 | C2×C4⋊D4 | C2×C4⋊C4 | C4⋊D4 | C22×D4 | C22×C4 | C24 | C23 | C23 | C22 | C22 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 4 | 2 | 3 | 1 | 4 | 4 | 8 | 2 |
Matrix representation of C2×C22.SD16 ►in GL5(𝔽17)
16 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 11 |
0 | 0 | 0 | 0 | 9 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 11 |
0 | 0 | 0 | 2 | 9 |
G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,0,1,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,11,9],[1,0,0,0,0,0,0,16,0,0,0,16,0,0,0,0,0,0,8,2,0,0,0,11,9] >;
C2×C22.SD16 in GAP, Magma, Sage, TeX
C_2\times C_2^2.{\rm SD}_{16}
% in TeX
G:=Group("C2xC2^2.SD16");
// GroupNames label
G:=SmallGroup(128,230);
// by ID
G=gap.SmallGroup(128,230);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,1123,1018,248,1971]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=b*c*d^3>;
// generators/relations